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I INTRODUCTION 

In this discussion the unconsolidated sediments are taken 

to be those in which the speed of compressional waves is less than 

about 4 km/sec* The upper limit is entirely arbitrary and has been 

chosen to include all the material with velocities lower than that 

of "Layer 2," which is discussed by Raitt (1956). Layers in which 

the velocity is between 2 and 4 km/sec have been described by vari¬ 

ous investigators as semi-consolidated sediments* Other authors 

have designated layers as unconsolidated A, B, .... , semi-consolidated 

A, B, .... , and consolidated A, B, . In almost every case the 

designation has been made solely on the basis of seismic wave velocity, 

since identification according to sediment type, age, or stratigraphic 

position has not been possible except in certain shallow water areas 

where wells have been drilled nearby. 

Most of the marine seismic measurements reported to date 

have been made in the Atlantic and Pacific oceans and in the shallow¬ 

er inter-continental seas* In all areas investigate d, the thickness 

of the unconsolidated sediments varies widely from zero on some of 

the topographic highs to several kilometers in some of the deeps and 

in some continental rise areas* The relationship of sediment thick¬ 

ness and topographic setting has become increasingly more understand¬ 

able, and even predictable, in recent years since Kuenen introduced 

the concept of transport of sediments by density or turbidity currents* 

This concept has been thoroughly verified by sediment coring and 

seismic measurements* It is now well known that even the coarser 

sediments derived from continental erosion can be carried great 

distances from land, flowing out into the ocean basins and being 



2 

empounded in the deepest accessible areas* It is also known from 

underwater photography, coring, dredging, and seismic measurements 

that many topographic highs are devoid of even pelagic sediments, 

presumably being kept clean by deep currents or by slumping* 

In addition to the variation of sediment thickness with 

topographic setting, there is a marked difference in average thick¬ 

ness of sediments in the Atlantic Ocean and in the Pacific. The 

Atlantic has an average of more than 1 km (Ewing and Ewing, 1959)» 

compared with less than 1/2 km in the Pacific (Raitt, 1956). This 

difference is generally attributed to the facts that the Atlantic is 

much smaller and that more large, sediment-bearing rivers flow into it. 

The thickness of sediment cannot always be measured exactly 

by seismic methods, owing to the difficulty of measuring the velocity, 

particularly in the uppermost part of the section in the deep ocean. 

Refracted waves give accurate measurements of the higher velocity 

layers; but because of various factors such as poor velocity or 

acoustic impedance contrast between the water and upper sediments, 

or between two sediment layers, clear reflected or refracted waves 

from these layers sometimes are not observed. Figure 1 shows the 

time-distance graph and structure section for a profile recorded in 

the South Atlantic in an area of thick sedimentary cover. This is 

typical of the seismic data from which sedimentary velocities and 

thicknesses are computed. The Rj , Rjj , and Hjjj curves are deter¬ 

mined by reflected waves from the 1st, 2nd, and 4th sub-surface 

interfaces respectively. The lines and are determined by 

refracted arrivals associated with the tops of layers 4 and 5* Note 

that no G^ line (corresponding to refracted arrivals along the sea 
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floor) is observed. This is typical of practically all, if not all, 

deep ocean areas. The significance of the absence of such arrivals 

is that in most places the seismic wave velocity in the upper part 

of the deep ocean sediments must be equal to or less than that in 

the water at the sea floor. The fact that reflected arrivals are 

received from this interface indicates that the acoustic impedance, 

pc (density x velocity), is different above and below the interface. 

The water and sediment mixture must be more dense than the water 

alone, hence the following relationships can be written as typical 

of the water-sediment interface 

C|=C2 P\^\^ P 2^2 P \ < Pz (1) 

II EVIDENCE FOR GRADIENTS AND LOW-VELOCITY SEDIMENTS 

The evidence for the velocity structure 6hown by the veloc¬ 

ity vs. depth curve in Figure 1 is derived from both refracted and 

reflected waves. In a time-distance graph, there is theoretically 

a reflection curve for each interface and a refraction line tangent 

to it, the inverse slope of which gives the velocity in the material 

below. If there is a velocity discontinuity at each interface and 

if velocity does not vary with depth in any layer, the time-distance 

graph will consist of straight line segments (for refracted arrivals) 

and hyperbolic curves (for reflections). If the velocity increases 

in each successively deeper layer R^ will cross RN _ ^ . In the case 

shown by Figure 1, the average velocity in layer 2 is higher than 

that in layer 1, but R^^ does not cross Rj . This indicates that 

the longer range arrivals on the R^j curve were not reflected fro® 
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the 2nd interface, as were those at shorter range, but were bent up¬ 

ward by a velocity gradient before penetrating to the depth of the 

interface. This behavior of reflected arrivals is typical of all 

ocean basin areas where detailed seismic studies have been reported 

(Hill, 1952), (Officer, 1955). (Katz and Swing, 1956), (Nafe and 

Drake, 1957), and (Ewing and Ewing, 1959)* It is convincing evidence 

that appreciable velocity gradients exist in the deep ocean sediments. 

Evidence for velocity gradients is found also in refraction data and 

has been summarized by Nafe and Drake (1957)* Refracted arrivals 

from various depths in the sediments taken from a number of profiles 

throughout the Atlantic Ocean show a systematic increase of velocity 

with depth. The average value of gradient is in agreement with that 

computed from reflection data. 

As mentioned before, the fact that refracted arrivals are 

not received from the water-sediment interface is interpreted to mean 

that either there is no velocity discontinuity across the interface 

or the velocity below is lower than that above. We have evidence 

for both cases. In certain areas the first sub-bottom reflection 

curve Rjj is observed to approach a line parallel to and above Rj 

on the time-distance graph. This can occur only if the velocity in 

the upper sediments is lower than water velocity. In other areas 

the Rjj curve approaches the R^ curve, indicating no velocity dis¬ 

continuity across the water-sediment interface. 

Further evidence for low-velocity sediments has been shown 

by Officer (1955) and Katz and Ewing (1956) from the study of guided 

waves traveling in the bottom just beneath the water-sediment inter¬ 

face. These waves have been recorded in many areas of the Atlantic. 
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They appear at a constant frequency at ranges beyond that of the water¬ 

borne refracted wave which grazes the sea floor. To account for the 

constant frequency and travel time of these arrivals* it is required 

that they be coupled waves* excited by the grazing ray in the water* 

and that they travel in a wave guide in the sediments. The wave 

guide might be a low-velocity layer, as described by Katz and Ewing* 

or it might be bounded above by a discontinuity and below by a velocity 

gradient. In either case the coupling would require that the upper 

sediments have a lower velocity than the bottom water. 

The evidence cited above indicates two significant features 

of deep ocean sediments: (1) they have appreciable velocity gradients, 

particularly in the upper few hundreds of meters, and (2) the velocity 

in the uppermost part of the sedimentary column is equal to or lower 

than that in the bottom water in most places. Direct measurement of 

sound velocities in sediments (Laughton, 1954), (Hamilton, 1956)* 

Hamilton, et al, 1956), (Shumway, 1956), (Sutton, Berckhemer, and 

Nafe, 1957) has shown velocities generally ranging between 1.45 and 

1.80 km/sec. Most values for deep ocean sediments are in the lower 

range, in good agreement with the seismic evidence. In the intermediate 

and shallow areas, higher velocities are found by both types of meas¬ 

urement. 

Ill VARIABLE ANGLE REFLECTIONS 

The method used to determine the amount of gradient by 

seismic reflection profiles has been described in detail by Hill (1952), 

Officer (1955), and Katz and Ewing(1956). It is a process in which 

a family of theoretical curves is compared with the observational 

data and the best fit determined. The curves shown in Figure 2 
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(from Nafe and Ewing, unpublished manuscript) give theoretical values 

of Rc - RT vs. range D for three different values of water depth and 

gradient, where Rc is the travel time of the wave refracted in the 

sediments, R^ is that of the bottom-reflected wave, and D is that of 

the direct water wave. These curves were computed for linear velocity 

gradients, for which the formulae are 
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where R^0 is the time for the bottom-reflected wave at zero shot-receiver 

distance, K is the gradient, is the velocity in the surface channel, 

is the mean velocity in the water, and is the velocity in the 

upper part of the sediments. The ray paths, with angles ©^ - ©^ indi¬ 

cated are shown in Figure 1. The theoretical curves of Figure 2 are 

those corresponding to the upper branch Re of the refraction curve 

shown in Figure 3* Each curve begins at the ’’critical range” corres¬ 

ponding to the minimum distance at which a ray can be returned to the 

surface by refraction under the conditions of velocity gradient and 

water depth indicated. The R^ branches of the curves, corresponding 

to the deeper penetrating rays, are not shown. They join the Rc 
b 

branches in cusps at the critical range and are curved in the opposite 

direction. For simplicity it was assumed that the water has uniform 

velocity equal to that in the upper sediments. Hence, in equations 

(2), * C1 = C2 * ®i 1 * an<* since we are dealing only with 



refracted waves, ©^ = 7T/2. For the ranges involved, it can be 

shown that errors introduced by the assumption that = C, are small, 

and as discussed earlier, we have much evidence that velocity in the 

upper sediments is approximately equal to that in the water* 

These same formulae can also be used for the cases in which 

the upper sediment velocity is either lower than or higher than water 

velocity* For , the curves corresponding to those in Figure 

2 would be displaced down and to the right. For , they would 

be displaced upward and toward the left. In the first case, there 

is no critical angle for reflection, even at grazing incidence, hence 

the Rg arrival is always later than R^. • In the second case, Rg will 

cross Rj • In the case illustrated, i.e. , Rg joins R^ at the 

range corresponding to a grazing ray. 

On these theoretical curves are plotted squares and triangle 

representing the observational data from two reflection profiles, A 

and B, with water depths corresponding to R^q = 5 and 7 seconds re¬ 

spectively. The data are plotted for ranges from 0 to 20 seconds, 

hence both reflected, Rjj, and refracted, Rg, arrivals are shown. In 

profile A, the outer points best fit the refraction curve for R^0 = 

5 and K » 0.45* At ranges beyond about 9*3 seconds , the observed 

arrivals are purely refracted* Since 9*3 seconds is the minimum 

range at which a refracted arrival can be returned to the surface 

under the conditions R^q = 5 seconds and K = 0.45 sec \ the arrivals 

at shorter range must be reflected* The fact that the reflected 

arrivals join smoothly to the refracted ones indicates that the re¬ 

flecting interface must lie at approximately the depth penetrated by 

the critical ray, i.e. the ray at range 9*3 seconds. If the interface 



- 8 - 

had been deeper, the reflection curve would have crossed the Rs - Ri 

curve above the cusp and joined the R^ - R^ curve as indicated dia- 

grammatically in Figure 4. 

If a reflecting interface is shallower than the depth of 

penetration of the critical ray, the R^ - R^ curve approaches and 

joins the Rc - RT curve from below as demonstrated by the arrivals of 

profile B in Figure 2. For this profile RjQ * 7 seconds and the best 

fit to the data is with the curve for K « 1.0 sec”\ 

Figure 5 shows the results from another profile for which 

. -1 
RI0 = ® seconds and K = 0.9 sec • There are two reflecting inter¬ 

faces, both shallower than the depth of penetration of the critical 

ray, as evidenced by the fact that both reflection curves pass below 

the cusp of the refraction curves for K = 0.9 sec From the fact 

that both curves indicate approximately the same value of K, it would 

appear that the upper reflector is a thin layer, above and below which 

the velocity and velocity gradient are not greatly different. This 

can be stated only qualitatively because the precision of picking 

the arrivals in the region where the curves come together is not high. 

In the profiles shown in Figure 1, the gradient in layer 2 

is found by the methods just described to be approximately 0.5 sec 

There is some evidence that the velocity continues to increase with 

depth below the 2-3 interface. This comes from the relationship of 

the Rj.^ curves and the lines. Although nearly so, the observed 

portions of the refraction lines are not tangent to the reflection 

curves as would be the case if they are associated with the same 

interface. Certainly it is possible that two interfaces are present; 

the upper one producing reflections but no refractions and the lower 
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one producing refractions but no reflections * but this seems an un¬ 

likely interpretation* In order for the extension of the refraction 

lines to be tangent to the curve, they would have to curve down¬ 

ward in the manner indicated by the dashed lines, indicating a gradient 

below the 2-3 interface. The fact that the outer portions of the 0^ 

lines are observed as straight lines indicates that at some depth 

below the 2-3 interface, the velocity becomes constant or nearly so. 

The 2-3 interface is judged to be a discontinuity with the 

higher velocity below on the basis of the observation of a critical 

angle for reflections from it. Figure 6 shows four records of the 

reflections at ranges of 2.6, 3*5* 4.4, and 3*4 seconds from profile 

99• Note the sharp change in character and strength of R^ in this 

relatively short range. The same behavior was noticed in profile 98 

and is a common feature of most sub-bottom reflection profiles in 

deep water areas. 

The 4-5 interface is determined by the refracted arrivals 

corresponding to G^ and by reflected arrivals Samples of the 

RjH signals are shown in Figure 6 in addition to the R^j arrivals. 

In the case of the 4-5 interface, note that there is perfect agree¬ 

ment between reflected and refracted arrivals (Figure 1) in that the 

G^ lines are tangent to the curves. 

As mentioned earlier, it is not unusual to record strong 

reflections from within the sedimentary column without receiving the 

corresponding refracted arrivals. This can be an indication that the 

reflector is a thin layer, or it could in some cases be explained 

if the velocity discontinuity is to a lower velocity below. Still 

another explanation can be that the discontinuity is one of density 
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rather than of velocity,i.e. ; P^pl ^ Pz^Z * 

The foregoing has been an attempt to describe the methods 

of obtaining velocity structure in the sediments in deep ocean areas, 

and some specific results have been shown. Although the cases dis¬ 

cussed were confined to comparison with linear gradients, comparisons 

have been satisfactorily made with parabolic and exponential curves. 

It is improbable that any one type of gradient is applicable every¬ 

where and, indeed, in most cases the best fit might be obtained with 

a combination, i.e. linear to a certain depth, and parabolic below 

that. Previously reported results on gradients measured by seismic 

techniques have been given by Hill (1952), Officer (1955)* Katz and 

Ewing (1956), and Nafe and Drake (1957) in addition to laboratory 

measurements on artificially compacted sediments by Laughton (1954). 

These results and others unreported have shown average gradients, 

principally from Atlantic Ocean profiles to vary between 0.4 and 2.5 

sec ^ for the upper 0.3 to 1.0 km of sediments. The variations are 

undoubtedly due in part to observational or interpretational differen¬ 

ces. Some profiles are shot with more appropriate charge sizes or 

shot spacing than others, and some have much simpler interpretations 

than others. However, a considerable part of the variations is 

probably real, indicating differences in sediment types, rates of 

sedimentation, porosity, grain size, lithification, and in other 

factors affecting seismic velocity (Sutton, Berckhemer and Nafe, 1957)• 

At present there has not been a sufficient number of determinations 

to permit the classification of areas by sediment velocity structure 

except possibly, as suggested by Nafe and Drake (1957)* to predict 

that in areas where calcium carbonate deposition is high, sediment 
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velocities will also tend to be high. Most of the better determina¬ 

tions have been made in abyssal plains or other flat lying areas in 

order to avoid topographic complications, and results from areas 

which receive no turbidity current deposits, if available, might show 

significant differences. 

Table I gives values of K from several profiles determined 

by fitting the theoretical curves for linear gradients. The highest 

value is that measured by Hill (1952). The lowest was measured on 

VEMA-15, profile A of Figure 2. The low value of gradient in this 

case is not unreasonable, because it is the average gradient in approx¬ 

imately 1 km of sediments. The higher values come from profiles in 

which only the upper 0.2-0.4 km was measured, and higher gradients are 

expected near the sea floor. Hill's value of 2.5 sec ^ also was 

measured over a depth of approximately 0.4 km. A possible alternate 

interpretation of his results, allowing that the closer points repre¬ 

sent reflections instead of refractions, could be made which would 

give a lower value of gradient. As shown in Figures 2 and 5i if 

there is a sub-bottom reflector at a depth less than that reached by 

the ray corresponding to the cusp, the reflection curve R^ associated 

with it will join smoothly to the Rg curve, and it would be difficult 

to distinguish between the two types of arrival. 

IV NORMAL INCIDENCE REFLECTIONS 

In addition to variable angle reflection and refraction 

measurements, a large number of normal incidence reflection measure¬ 

ments have been made. Only a small percentage of these has been 

published (Hersey and Ewing, 1949) and (Shor, 1959)* Mersey and 

Ewing made certain classifications of reflection records on the basis 
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of the character of the bottom reflection and of the number and type 

of sub-bottom reflections* They were able to show some correlation 

between reflection types and physiographic provinces for certain areas 

of the western North Atlantic* Shor's measurements in the Pacific 

covered the boundary between the present day clay deposition and 

carbonate deposition areas and showed markedly thicker sedimentary 

cover in the latter (southern) region* His results also showed greater 

accumulation of material in valleys than on hills* 

Sub-bottom reflections on standard echo-sounding records 

have been discussed by Hersey and Rutstein (1953)* Heezen, Tharp and 

Ewing (1959)t Worzel (1959)* and Ewing, Luskin, Roberts and Hirshman 

(1930)* These studies have 6hown that in many areas, penetration of 

the sediments to depths greater than 100 feet is achieved, even at the 

relatively high frequencies employed in the sounding equipment (12 kcs/ 

sec)* The sub-bottom echoes are often stronger than the bottom reflec¬ 

tion. In certain areas, particularly on moderate topographic highs, 

these sub-bottom interfaces can be traced for many miles* As in Shor's 

results, the depth to the sub-bottom reflector is usually correlated 

with topography; the upper layer thins or pinches out on hills and 

thickens in valleys* In abyssal plains, the sub-bottom reflectors 

are usually not as continuous as on the rises, as might be expected 

when one considers that the plains are subjected to turbidity current 

deposition and the rises only to pelagic sedimentation* 

Efforts to sample specific sub-bottom interfaces with coring 

apparatus have been made on two occasions* Worzel identified a prom¬ 

inent reflector in the southeastern Pacific as a widespread layer of 

white volcanic ash* Ewing et al (in press) found that strong reflectors 
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on the outer rise of the Puerto Rico trench correlated with increases 

in rigidity, presumably associated with increased carbonate content. 

Continuous profiling of sub-bottom reflections in shallow 

water areas has been described by Knott and Hersey (195&)* Moore 

(I960) and Beckmann et al (1959)• This development has made it possible 

to obtain detailed surveys of sediment structure to depths of thousands 

of feet in some areas and offers great advances in the study of marine 

stratigraphy. 

A new technique, utilizing a Seismic Profiler, for making 

seismic reflection measurements in deep water has recently been devel¬ 

oped and employed with great success. Sediment thickness of 12,000- 

15*000 feet was measured in water deeper than 2000 fathoms. Small 

charges, up to 1/2 pound T.N.T., were used for the sound source, 

fired on a two-minute schedule with the ship traveling at 7-8 knots. 

The receiver, an AX-58C or K-100 hydrophone, was slacked for each 

shot. The Seismic Profiler is a modified Times Facsimile drum recorder 

fitted with a slip clutch and a triggered release which provides time 

synchronization of random pulses. The record produced is similar 

to that of a standard echo sounder or one made by the various sub¬ 

bottom depth recorders used in shallow water areas. A paper describ¬ 

ing the equipment and results is in press, (Ewing and Tirey). 

V SUMMARY 

Measurements of velocity gradients by variable range reflec¬ 

tion studies give average values between 0.9 and 1.4 sec ^ for the 

upper 0.2 to 0.4 km of sediments in deep water areas. With the 

evidence cited previously for low velocities immediately below the 

water-sediment interface, we can consider that the velocity vs. depth 
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relationship most common in deep water sediments is approximately 

described by a parabolic or exponential function in which the upper 

sediments have velocities equal to or slightly lower than that in 

the water. At greater depths in the sediments the gradient is appar¬ 

ently only 20-30 percent of that and, in fact, may become insignif¬ 

icant at depth in some areas. There is some indication that the high 

gradients persist to some depth at which de-watering is largely 

achieved. Below this depth compaction would be retarded, resulting 

in lower gradients. Such behavior would be consistent with observa¬ 

tions of porosity vs. pressure of the kind summarized by Hamilton 

(1959) on the consolidation of sediments. Porosity decreases rapidly 

at first, then more slowly with increasing pressure and would be 

expected to result in the variable gradients of the type observed. 

As shown by Nafe and Drake (1957)* gradients in shallow water 

sediments generally do not vary as markedly with depth as do those 

in deep water. Reference is suggested to their 1957 paper for an 

analysis of the relationships between compressional and shear wave 

velocities, porosity, density and other physical properties. The 

evidence they presented for differences between the velocity-depth 

dependence in deep and shallow water was statistical and based on 

tabulations of reported velocities and depths. For accurate informa¬ 

tion on the depth variation of velocity in the uppermost portion of 

the sedimentary column more sensitive methods are required. Seismic 

records obtained by shooting and recording on the ocean bottom should 

provide the necessary additional precision. 

Thicknesses of low-velocity sediments measured by reflection 

and refraction techniques range from an average of 1 km in the Atlantic 
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to 1/2 km in the Pacific. As suggested by Hamilton (1959) in a 

comprehensive review of compaction and lithification processes and 

of measured velocities and thicknesses, there is good reason to be¬ 

lieve that the underlying "layer 2", described by Raitt (1956), is 

also sedimentary material, presumably well consolidated or lithified. 

This interpretation has been cited by Hamilton and others to estab¬ 

lish agreement between the amount of material estimated to have been 

eroded from continents and that found by seismic measurements in the 

oceans. 
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TABLE I 

Measurements Latitude Longitude 
Water 
Depth 

(Rio) 

Velocity 
Gradient 
K sec“l 

Sl-98 & 99 52 - 25s uo - 35w 5.o 0.1*5 

H-8 23 - 32N 71 - o5w 7.2 1.0 

H-ll 26 - ION 75 - 02W 6.1 0.9 

H-19 33 - 20N 71 - 30W 7.0 1.U 

H-20 33 - o5n 73 - U5w 6.5 1.U 

H-15 36 - 15N 67 - low 6.5 1.5 

H-33 38 - 05N 70 - oow 5.1 1.0 

H-U 21 - 26N 67 - 29W 6.8 1.2 

o-55 35 - 15N 61* - 30W 6.7 1.0 

MH-52 53 - 50N 18 _ iiOW 3.2 2.5 
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Figure 3» Kay diagram and time-distance graph showing effect of 
velocity gradient in thick sediments. 



Figure 4, Rg - R vs. D for case where 2-3 interface is deeper than 
depths penetrated by purely refracted ray. 
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Figure 6. Seismic records showing critical angle reflections for 

RII* ^III arr^va^s are ^rom base of low-velocity sediments. Water 
depth * 3*75 km. Thickness of low-velocity sediments = 4 km. 






